43. Biosynthesis of the Nosiheptide Indole Side Ring Centers on a Cryptic Carrier Protein NosJ

Wei Ding, Wenjuan Ji, Yujie Wu, Runze Wu, Wan-Qiu Liu, Tianlu Mo, Junfeng Zhao, Xiaoyan Ma, Wei Zhang, Ping Xu, Zixin Deng, Boping Tang,* Yi Yu*, and Qi Zhang*

Nat. Commun. 2017, In Press


42. A mechanistic study of the non-oxidative decarboxylation catalyzed by the radical

S-adenosyl-L-methionine enzyme BlsE involved in blasticidin S biosynthesis

Lei Liu, Xinjian Ji, Yongzhen Li, Wenjuan Ji, Tianlu Mo, Wei Ding and Qi Zhang*

Chem. Commun. 2017, DOI: 10.1039/c7cc04286h


41. Biosynthetic Insights into Linaridin Natural Products from Genome Mining and Precursor Peptide Mutagenesis.

Tianlu Mo, Wan-Qiu Liu, Wenjuan Ji, Junfeng Zhao, Tuo Chen, Wei Ding, Shaoning Yu*, and Qi Zhang*

ACS Chem. Biol., 2017, 12, 1484-1488.


40. Nucleoside-linked Shunt Products in the Reaction Catalyzed by the Class C Radical S-Adenosylmethionine Methyltransferase NosN

Wei Ding, Yujie Wu, Xinjian Ji, Haocheng Qianzhu, Fener Chen, Zixin Deng, Yi Yu, and Qi Zhang*

Chem. Commun. 2017, 53, 5235-5238.


39. The Catalytic Mechanism of the Class C radical S-Adenosylmethionine Methyltransferase NosN

Wei Ding, Yongzhen Li, Junfeng Zhao, Xinjian Ji, Tianlu Mo, Haocheng Qianzhu, Zixin Deng, Yi Yu, Fener Chen, and Qi Zhang*

Angew. Chem. Int. Ed. 2017, 56, 3857-3861 (Featured in C&E News)


38. Using Radical SAM Chemistry to Access Nucleoside-Containing Compounds

Xinjian Ji and Qi Zhang*

Synlett, 2017, 28, 143-147.


37. Reactivity of the nitrogen-centered tryptophanylradical in the catalysis by the radical SAM enzyme NosL

Haocheng Qianzhu,   Wenjuan Ji,   Xinjian Ji,   Leixia Chu,  Chuchu Guo,   Wei Lu,   Wei Ding,   Jiangtao Gao* and  Qi Zhang*

Chem. Commun. 2016, 53, 344-347.


36. Expanding radical SAM chemistry by using radical addition reactions and SAM analogues

Xinjian Ji, Yongzhen Li, Liqi Xie, Haojie Lu, Wei Ding*, and Qi Zhang*

Angew. Chem. Int. Ed. 2016, 55, 11845-8 (Highlighted in Faculty of 1000)


35. Mechanistic study of the radical SAM-dependent amine dehydrogenation reactions

Xinjian Ji, Wan-Qiu Liu, Shuguang Yuan, Yue Yin, Wei Ding and Qi Zhang

Chem. Commun. 2016, 52, 10555-8

34.Catalytic promiscuity of the radical S-adenosyl-L-methionine enzyme NosL
Wei Ding, Xinjian Ji and Yongzhen Li, and Qi Zhang*
Front. Chem. 2016, 4, 27.

33. Characterization of a C3 deoxygenation pathway reveals a key branch point in aminoglycoside biosynthesis

Meinan Lv, Xinjian Ji, Junfeng Zhao, Yongzhen Li, Chen Zhang, Li Su, Wei Ding, Zixin Deng, Yi Yu* and Qi Zhang*

J. Am. Chem. Soc. 2016, DOI:10.1021/jacs.6b02221.


32. Emerging diversity of the cobalamin-dependent methyltransferases involving radical-based mechanisms

Wei Ding, Qien Li, Youli Jia, Xinjian Ji, Haocheng Qianzhu, and Qi Zhang*

ChemBioChem, 2016, DOI: 10.1002/cbic.201600107


31. Biosynthetic investigation of phomopsins revealed a widespread pathway for ribosomal natural products in filamentous fungi

Wei Ding, Wan-Qiu Liu, Youli Jia, Yongzhen Li, Wilfred A van der Donk*, and Qi Zhang*

Proc. Natl. Acad. Sci. 2016, 113, 3521-6


30. Mechanistic Insights into the Radical S-adenosyl-l-methionine Enzyme NosL From a Substrate Analogue and the Shunt Products.

Xianjian Ji, Yongzhen Li, Youli Jia, Wei Ding, Qi Zhang*

Angew Chem Int Ed Engl. 2016, 55, 3334-7

29. pH-Responsive single-layer honeycomb supramolecular organic frameworks that exhibit antimicrobial activity
Liang Zhang, Youli Jia, Hui Wang, Dan-Wei Zhang*, Qi Zhang*, Yi Liu* and Zhan-Ting Li*  

Polym. Chem., 2016, 7, 1861-1865


28. Substrate-Tuned Catalysis of the Radical S-Adenosyl-L-Methionine Enzyme NosL Involved in Nosiheptide Biosynthesis

Xianjian Ji, Yongzhen Li, Wei Ding, Qi Zhang*

Angew Chem Int Ed Engl. 2015, 54, 9021-4

27. Metabolic flux analysis of the halophilic archaeon Haladaptatus paucihalophilus

Guangxiu Liu, Manxiao Zhang, Tianlu Mo, Lian He, Wei Zhang, Yi Yu*, Qi Zhang*, Wei Ding*.

Biochem Biophys Res Commun. 2015, 467, 1058-62


26. Substrate-controlled stereochemistry in enzyme catalysis

Wei Ding, Yongzhen Li, and Qi Zhang*

ACS Chem Biol. 2015, 10, 1590-8

25. Evolution of threonine aldolases, a diverse family involved in the second pathway of glycine biosynthesis

Guangxiu Liu, Manxiao Zhang, Ximing Chen, Wei Zhang, Wei Ding*, Qi Zhang*

J. Mol. Evol., 2015, 80, 102-107

Postdoctoral Research 

(UniversityofIllinoisat Urbana-Champaign)

24. Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in Actinobacteria

Qi Zhang, James R. Doroghazi, Xiling Zhao, Mark C. Walker, and Wilfred A. van der Donk*

Appl. Environ. Microbiol., 2015, 81, 4339-50 [This paper was featured as "Spot light paper" (paper of significant interests) in AEM].

23.Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB

Manuel A. Ortega, Yue Hao, Qi Zhang, Mark C. Walker, Wilfred A. van der Donk* and Satish K. Nair*

Nature 2015, 517, 509-12

22. High Divergence of the Precursor Peptides in Combinatorial Lanthipeptide Biosynthesis

Qi Zhang, Xiao Yang, Huan Wang, and Wilfred A. van der Donk*

ACS Chem. Biol. 2014, 9,2686-2694

21. Structural investigation of ribosomally synthesized natural products by hypothetical structure enumeration and evaluation using tandem MS

Qi Zhang, Manuel A. Ortega, Yanxiang Shi, Huan Wang, Joel O. Melby, Douglas A. Mitchell, and Wilfred A. van der Donk*

Proc. Natl. Acad. Sci. 2014, 111,12031-12036

20. Substrate specificity of the lanthipeptide peptidase ElxP and the oxidoreductase ElxO

Manuel A. Ortega , Juan E. Velásquez , Neha Garg , Qi Zhang , Rachel Joyce , Satish K Nair , and Wilfred A. van der Donk*.

ACS Chem Biol., 2014, 9, 1718-1725

19. The glycosyltransferase involved in thurandacin biosynthesis catalyzes both O- and S-glycosylation

Huan Wang, Trent J Oman, Ran Zhang, Chantal V. Garcia De Gonzalo, Qi Zhang, and Wilfred A. van der Donk*

J. Am. Chem. Soc., 2014, 136, 84–87

18. Insights into the evolution of lanthipeptide biosynthesis.

Yi Yu, Qi Zhang, and Wilfred. A. van der Donk*

Protein Sci., 2013, 22,1478-1489

17. Evolution of lanthipeptide synthetases

Qi Zhang, Yi Yu, Juan E. Vélasquez, and Wilfred. A. van der Donk*

Proc. Natl. Acad. Sci., 2012, 109, 18361-18366.

16. Catalytic promiscuity of a bacterial α-N-methyltransferase

Qi Zhang and Wilfred. A. van der Donk*

FEBS Lett., 2012, 586, 3391-3397

15. Thioether Crosslinkages Created by a Radical SAM Enzyme

Qi Zhang* and Yi Yu*

ChemBioChem, 2012, 13, 1097-1099.

14. Answers to the Carbon-Phosphorus Lyase Conundrum

Qi Zhang and Wilfred. A. van der Donk*

ChemBioChem, 2012, 13, 627-629.

13. Radical-Mediated Enzymatic Methylation: A Tale of Two SAMS

Qi Zhang, Wilfred. A. van der Donk*, and Wen Liu*

Acc. Chem. Res., 2012, 45, 555-64.

Graduate Research (Shanghai Institute of Organic Chemistry)

12. Aromatic Polyketides Produced by Bacterial Iterative Type I Polyketide Synthases.

Qi Zhang, Bo Pang, Wei Ding, and Wen Liu*

ACS Catal., 2013, 3, 1439–1447

11. Biosynthesis of thiopeptide antibiotics and their pathway engineering

Qi Zhang and Wen Liu*

Nat. Prod. Rep., 2013, 30, 218-226


10. Genetic Enhancement of the Supply of the Unusual Polyketide Extender Units Improves FK506 Production in Streptomyces tsukubaensis via Utilization of Two Distinct Site-Specific Recombination Systems.

Dandan Chen, Qi Zhang, Qinglin Zhang, Peilin Cen, Zhinan Xu*, and Wen Liu*

Appl. Environ. Microbiol., 2012, 78, 5093-5103

9. Complex Biotransformations Catalyzed by Radical S-Adenosylmethionine Enzymes

Qi Zhang* and Wen Liu*

J.Biol. Chem., 2011, 286, 30245-30252.

8. Characterization of NocL Involved in Thiopeptide Nocathiacin I biosynthesis: A [4Fe-4S] Cluster and the Catalysis of a Radical S-Adenosylmethionine Enzyme

Qi Zhang, Dandan Chen, Jin Lin, Rijing, Liao, Wei Tong, and Wen Liu*

J. Biol. Chem., 2011, 286, 21287-21294.

7. Radical-Mediated Enzymatic Carbon Chain Fragmentation-Recombination.

Qi Zhang, Yuxue Li, Dandan Chen, Yi Yu, Lian Duan, Ben Shen, and Wen Liu*

Nat. Chem. Biol., 2011, 7,154-160. [This paper was highlighted in (1)Science. 2011, 331, 1366; (2) Nat. Chem. Biol., 2011, 7,133-134; (3)Faculty 1000,; (4)Nature China 2011, doi: 10.1038/nchina.2011.9]

6. NosA Catalyzing Carboxyl-Terminal Amide Formation in Nosiheptide Maturation via an Enamine Dealkylation on the Serine-Extended Precursor Peptide

Yi Yu, Heng Guo, Qi Zhang, Lian Duan, Ying Ding, Rijing Liao, Chun Lei, Ben Shen, and Wen Liu*

J. Am. Chem. Soc., 2010, 132, 16324–16326.

5. Biosynthesis of 3-Methoxy-5-Methyl Naphthoic Acid and Its Incorporation into the Antitumor Antibiotic Azinomycin B.

Wei Ding, Wei Deng, Mancheng Tang, Qi Zhang, Gongli Tang, Yurong Bi and Wen Liu*

Mol. BioSyst., 2010, 6, 1071-1081.

4. Nosiheptide Biosynthesis Featuring a Unique Indole Side Ring Formation on the Characteristic Thiopeptide Framework.

Yi Yu, Lian Duan, Qi Zhang, Rijing Liao, Ying Ding, Haixue Pan, Evelyn Wendt-Pienkowski, Gongli Tang, Ben Shen and Wen Liu*

ACS Chem. Biol., 2009, 4, 855–864.

3. Thiopeptide Biosynthesis Featuring Ribosomally Synthesized Precursor Peptides and Conserved Posttranslational Modifications.

Rijing Liao, Lian Duan, Chun Lei, Haixue Pan, Ying Ding, Qi Zhang, Daijie Chen, Ben Shen, Yi Yu*, and Wen Liu*

Chem. Biol., 2009, 16, 141–147.

2. Characterization of the Azinomycin B Biosynthetic Gene Cluster Revealing a Different Iterative Type I Polyketide Synthase for Naphthoate Biosynthesis.

Qunfei Zhao, Qingli He, Wei Ding, Mancheng Tang, Qianjin Kang, Yi Yu, Wei Deng, Qi Zhang, Jie Fang, Gongli Tang, and Wen Liu*

Chem. Biol., 2008, 15, 693-705.

1. Cloning and Characterization of the Tetrocarcin A Gene Cluster From Micromonospora chalcea NRRL 11289 Reveals a Highly Conserved Strategy for Tetronate Biosynthesis in Spirotetronate Antibiotics.

Jie Fang, Yiping Zhang, Lijuan Huang, Xinying Jia, Qi Zhang, Xu Zhang, Gongli Tang and Wen Liu*  

J. Bacteriology, 2008, 190, 6014-6025.